[1] Lastrucci L, et al. Artificial intelligence in radiotherapy[J]. Semin Cancer Biol, 2022, 86: 160-171.
[2] Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation[C]//International Conference on Medical image computing and computer-assisted intervention. Springer, 2015: 234-241.
[3] Valdes G, et al. Evaluation of a knowledge-based planning solution for head and neck cancer[J]. Int J Radiat Oncol Biol Phys, 2015, 91(3): 612-620.
[4] Thompson RF, Valdes G, Fuller CD, et al. Artificial intelligence in radiation oncology: a specialty-wide disruptive transformation?[J]. Radiother Oncol, 2018, 129(3): 421-426.
[5] Xing L, Krupinski EA, Cai J. Artificial intelligence will soon change the landscape of medical physics research and practice[J]. Med Phys, 2018, 45(5): 1791-1793.
[6] Zhang X, Hu Z, Zhang G, et al. Dose calculation in proton therapy using a discovery cross-domain generative adversarial network (DiscoGAN)[J]. Med Phys, 2021, 48(5): 2646-2660.
[7] Zhu W, Huang Y, Chen X, et al. AnatomyNet: Deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy[J]. Med Phys, 2019, 46(2): 576-589.